Particle Image Velocimetry (PIV) Quantitative Flow Visualization
 Beyond
 Measure.

Particle image velocimetry is a laser-based imaging technique that combines the accuracy of non-intrusive point measurements with the global flow imaging capability of flow visualization to obtain time-resolved, instantaneous velocity information over
an extended region of the flow.

Illumination

- A laser beam is formed into a light-sheet using a combination of lenses
- The light-sheet is pulsed, "freezing"
the location of particles in the planar measurement region
- The laser pulses are separated by a known time ($\Delta \mathrm{t}$)

Measurement Region

- Small tracer particles are added to the flow
- Light is scattered from the tracer particles in the light-sheet - The measurement region, called Field of View (FoV), increases with pixel resolution:* FoV $=\frac{P_{1} \cdot P_{2}}{M}$

The Camera System

- A camera captures an image of the particles in the light-sheet
- The magnification (M) is determined by the camera lens
- Two images are taken - one corresponding to each laser pulse
- Images are transferred to a computer for processing
- Spatial resolution increases
with magnification
- Temporal resolution increases with image capture rate

PIV Results

- Instantaneous planar velocity vector fields
- Higher-order quantities such as vorticity, shear
stress, Q-criterion, and turbulent energy
- A sequence of images can provide temporal flow characteristics (flow evolution)

1
\downarrow
\square

Extensions of the Technique

- StereoPIV - Two cameras at oblique angles can be used to obtain 3D velocity information in a plane
- Volumetric 3-Component Velocimetry (V3V) Three cameras are used to determine 3D velocity fields in a volume
- A high speed camera and laser can be used to obtain time resolved velocity fields

