POSITIVE AND NEGATIVE DUCT ACCREDITATION (PANDA) SYSTEM
AIRFLOW™ INSTRUMENTS
MODEL PAN341 SERIES (PANDA LIGHT)
OPERATION AND SERVICE MANUAL

P/N 6006694, REV G
SEPTEMBER 2020
START SEEING THE BENEFITS OF REGISTERING TODAY!

Thank you for your TSI instrument purchase. Occasionally, TSI releases information on software updates, product enhancements and new products. By registering your instrument, TSI will be able to send this important information to you.

http://register.tsi.com

As part of the registration process, you will be asked for your comments on TSI products and services. TSI’s customer feedback program gives customers like you a way to tell us how we are doing.

TSI Incorporated - Visit our website www.tsi.com for more information.

USA Tel: +1 800 674 2811 India Tel: +91 90 67877200
UK Tel: +44 1494 459200 China Tel: +86 10 8219 7688
France Tel: +33 1 41 19 21 99 Singapore Tel: +65 6595 6388
Germany Tel: +49 241 523030
Limitation Of Warranty And Liability (effective February 2015)
(For country-specific terms and conditions outside of the USA, please visit www.tsi.com.)

Seller warrants the goods, excluding software, sold hereunder, under normal use and service as described in the operator's manual, to be free from defects in workmanship and material for **24 months**, or if less, the length of time specified in the operator's manual, from the date of shipment to the customer. This warranty period is inclusive of any statutory warranty. This limited warranty is subject to the following exclusions and exceptions:

a. Hot-wire or hot-film sensors used with research anemometers, and certain other components when indicated in specifications, are warranted for 90 days from the date of shipment;

b. Pumps are warranted for hours of operation as set forth in product or operator's manuals;

c. Parts repaired or replaced as a result of repair services are warranted to be free from defects in workmanship and material, under normal use, for 90 days from the date of shipment;

d. Seller does not provide any warranty on finished goods manufactured by others or on any fuses, batteries or other consumable materials. Only the original manufacturer's warranty applies;

e. This warranty does not cover calibration requirements, and seller warrants only that the instrument or product is properly calibrated at the time of its manufacture. Instruments returned for calibration are not covered by this warranty;

f. This warranty is VOID if the instrument is opened by anyone other than a factory authorized service center with the one exception where requirements set forth in the manual allow an operator to replace consumables or perform recommended cleaning;

g. This warranty is VOID if the product has been misused, neglected, subjected to accidental or intentional damage, or is not properly installed, maintained, or cleaned according to the requirements of the manual. Unless specifically authorized in a separate writing by Seller, Seller makes no warranty with respect to, and shall have no liability in connection with, goods which are incorporated into other products or equipment, or which are modified by any person other than Seller.

The foregoing is **IN LIEU OF** all other warranties and is subject to the **LIMITATIONS** stated herein. **NO OTHER EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR PARTICULAR PURPOSE OR MERCHANTABILITY IS MADE. WITH RESPECT TO SELLER'S BREACH OF THE IMPLIED WARRANTY AGAINST INFRINGEMENT, SAID WARRANTY IS LIMITED TO CLAIMS OF DIRECT INFRINGEMENT AND EXCLUDES CLAIMS OF CONTRIBUTORY OR INDUCED INFRINGEMENTS. BUYER'S EXCLUSIVE REMEDY SHALL BE THE RETURN OF THE PURCHASE PRICE DISCOUNTED FOR REASONABLE WEAR AND TEAR OR AT SELLER'S OPTION REPLACEMENT OF THE GOODS WITH NON-INFRINGEMENT GOODS.**

TO THE EXTENT PERMITTED BY LAW, THE EXCLUSIVE REMEDY OF THE USER OR BUYER, AND THE LIMIT OF SELLER'S LIABILITY FOR ANY AND ALL LOSSES, INJURIES, OR DAMAGES CONCERNING THE GOODS (INCLUDING CLAIMS BASED ON CONTRACT, NEGLIGENCE, TORT, STRICT LIABILITY OR OTHERWISE) SHALL BE THE RETURN OF GOODS TO SELLER AND THE REFUND OF THE PURCHASE PRICE, OR, AT THE OPTION OF SELLER, THE REPAIR OR REPLACEMENT OF THE GOODS. IN THE CASE OF SOFTWARE,
SELLER WILL REPAIR OR REPLACE DEFECTIVE SOFTWARE OR IF UNABLE TO DO SO, WILL REFUND THE PURCHASE PRICE OF THE SOFTWARE. IN NO EVENT SHALL SELLER BE LIABLE FOR LOST PROFITS, BUSINESS INTERRUPTION, OR ANY SPECIAL, INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES. SELLER SHALL NOT BE RESPONSIBLE FOR INSTALLATION, DISMANTLING OR REINSTALLATION COSTS OR CHARGES. No Action, regardless of form, may be brought against Seller more than 12 months after a cause of action has accrued. The goods returned under warranty to Seller's factory shall be at Buyer's risk of loss, and will be returned, if at all, at Seller's risk of loss.

Buyer and all users are deemed to have accepted this LIMITATION OF WARRANTY AND LIABILITY, which contains the complete and exclusive limited warranty of Seller. This LIMITATION OF WARRANTY AND LIABILITY may not be amended, modified or its terms waived, except by writing signed by an Officer of Seller.

Service Policy
Knowing that inoperative or defective instruments are as detrimental to TSI as they are to our customers, our service policy is designed to give prompt attention to any problems. If any malfunction is discovered, please contact your nearest sales office or representative, or call TSI's Customer Service department at (800) 680-1220 (USA) or (001 651) 490-2860 (International) or visit www.tsi.com.

Trademarks
TSI and TSI logo are registered trademarks of TSI Incorporated in the United States and may be protected under other country's trademark registrations.
CONTENTS

CHAPTER 1 UNPACKING AND PARTS IDENTIFICATION 1

CHAPTER 2 PREPARING PAN341 SYSTEM FOR AIR DUCT LEAK TESTING ... 5

CHAPTER 3 PERFORMING A DUCT LEAKAGE TEST 11
 Measuring Duct Static Pressure .. 11
 Measuring Duct Leakage Flow .. 12
 Turning on the PAN341 Duct Leakage Tester 12
 Using Leakage Test Application in the Model TA465-P 12
 Troubleshooting Guide .. 16

APPENDIX A SPECIFICATIONS 17

APPENDIX B LEAKAGE TESTING STANDARDS HIGHLIGHTS ... 21
 Standards Supported .. 21
 EU Standards .. 22
 US Standards .. 25

APPENDIX C TYPICAL SETUP 29
(This page intentionally left blank)
Chapter 1

Unpacking and Parts Identification

Carefully unpack the PANDA system and instrument cases from the shipping container. Check the individual parts against the list of components below. If anything is missing or damaged, notify TSI Incorporated (TSI®) immediately.

The PANDA system consists of the following:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Part Number</th>
<th>Reference Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low flow nozzle</td>
<td>6002598</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Primary duct adapter spigot plus rubber bung (to fit to test duct)</td>
<td>6002638</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cam lock primary spigot (to connect flexi-duct to PANDA)</td>
<td>6002607</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ø4 in. (100 mm) adjustable over lock straps</td>
<td>6002683</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13 ft (4 m) long Ø4 in. (100 mm) plastic flexible duct</td>
<td>6002667</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20 in. (500 mm) silicone tubes (red)</td>
<td>AFL9020004</td>
<td></td>
</tr>
<tr>
<td>Qty</td>
<td>Description</td>
<td>Part Number</td>
<td>Reference Picture</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2</td>
<td>20 in. (500 mm) silicone tubes (blue)</td>
<td>AFL9020005</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16 ft (5 m) silicone tube (blue)</td>
<td>AFL9020005</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>K-type thermocouple probe</td>
<td>AFL82859201</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Instrument adapter</td>
<td>AFL82859401</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Instrument Box</td>
<td>6006490</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Flex Duct Carry Tube</td>
<td>6006491</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Operation and Service manual</td>
<td>6006694</td>
<td></td>
</tr>
</tbody>
</table>
The following two instruments should be used in conjunction with the PANDA unit:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA465-P Multi-function Instrument</td>
<td>Refer to TA465 Operation and Service Manual supplied with the instrument for additional parts supplied as standard.</td>
</tr>
<tr>
<td>PVM610 Micromanometer</td>
<td>Refer to PVM610 Operation and Service Manual supplied with the instrument for additional parts supplied as standard.</td>
</tr>
</tbody>
</table>

IMPORTANT—Read Before Using the PANDA for the First Time

It is **IMPORTANT** that the PANDA be connected to the power supply using a 30 mA residual-current device (RCD) or Ground Fault Circuit Interrupter (GFCI).

It is **IMPORTANT** that the 110V PANDA (yellow power socket) be connected only to 110V to 120V supplies. Connecting it to a higher voltage supply will permanently damage the inverter.

The 220V/240V PANDA (blue power socket) should only be connected to 200V to 240V power supplies.

When storing the PANDA in a vertical position, please ensure that the straps holding the instrument box are in place and tightened first.

The PANDA is designed so that the Instrument box and duct carry tube are removable to lighten the load when lifting.

D A N G E R

Turn the isolation switch to the OFF position and wait 10 minutes prior to disconnecting power.
PANDA Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN315</td>
<td>220/240V, instruments not included</td>
</tr>
<tr>
<td>PAN315-110</td>
<td>110/120V, instruments not included</td>
</tr>
<tr>
<td>PAN341</td>
<td>PAN315 with instruments</td>
</tr>
<tr>
<td>PAN341-110</td>
<td>PAN315-110 with instruments</td>
</tr>
</tbody>
</table>
Chapter 2

Preparing PAN341 System for Air Duct Leak Testing

Carefully follow the procedures below to achieve safe and accurate leakage testing:

Successfully completing a duct leakage test requires compiling certain information prior to starting the test. Refer to Appendix B for a discussion of standards relating to duct leakage testing. The list below indicates the information required:

- Type of leakage test to be performed (positive or negative).
- Leakage standard to be followed.
- Air tightness/leakage class to be achieved.
- Amount of ductwork to be tested, such as the complete system or a statistical sample.

1. Select the section of the ductwork to be tested.
2. Calculate the surface area of the ductwork of the section to be tested.
3. Temporarily seal all the openings of the ductwork except one, which will be connected to the PAN341 duct leakage tester.
4. Position the PAN341 unit as close to the remaining opening in the ductwork as possible to minimize the flexible tubing needed. Minimize bends in the flexible tubing to reduce the pressure loss, giving the best performance.
5. Make sure the Fan Run/Stop Switch on the Fan Speed Controller is in the Stop position and the multi-turn Fan Speed Control potentiometer is fully turned counter-clockwise using the picture of the VFD in Figure 1 as a reference. Plug the cord into the PANDA unit as shown in Figure 2 and Figure 3. Then connect the other end of the cord to a suitable electrical supply.

CAUTION

Remove the power cord from the PANDA duct leakage tester before tilting it to the vertical position to avoid damaging the cord.
Fan RUN/STOP Switch

Isolation Switch

Fan Speed Control

Figure 1. Fan Speed Controller

NOTE: The settings for the inverter have been locked and cannot be changed using the key pad.

Figure 2. Receptacle for Power Cord

Figure 3. Connected Power Cord

NOTE: The 110V unit has a yellow receptacle and the 230V unit has a blue receptacle.

DANGER

Turn the isolation switch to the OFF position and wait 10 minutes prior to disconnecting power.
6. Fit the primary duct adapter spigot (black sheet metal with rubber bung) to one end of the 4 in. (100 mm) diameter flexi-tube. Make an air-tight seal using one of the over lock straps and lever-locking cam provided as shown in Figure 4. Adjust the fit of the over lock strap with a screwdriver.

7. Securely attach the black primary duct adapter spigot/flexi-tube assembly to the opening on the ductwork to be pressure tested.

8. If the static pressure tap on the black Primary Duct Adapter is open to the duct, connect the 16 ft (5 m) long blue silicone tube to it as shown in Figure 5. If the static pressure tap on the black Primary Duct Adapter is not open to the duct, drill a 4 mm hole in the duct and insert about 6 inches (10 mm) of the silicone tube into the duct. Seal around the hole with putty.

9. Connect the other end of the 4 in. (100 mm) flexi-tube to the cam lock connector (grey cast aluminum without nozzle). Make an airtight seal using the other over lock strap (not shown) and lever-locking cam provided. Adjust the fit of the over lock strap with a screwdriver.
10. Determine if you are going to perform a high- or low-flow testing and positive or negative testing. Set-up the duct leakage tester by:

a. For positive pressure, high-flow testing, remove the low flow nozzle if it is installed. Then, connect the grey cast-aluminum cam lock connector to the outlet side of the blower per Figure 6. Close both cam lock arms at the same time to ensure proper fit.

Connect the free end of the static pressure 16 ft (5 m) silicone tube to the positive pressure connector on the PVM610. Finally, connect the FLOW GRID pressure taps marked P1(+) and P2(-) to the appropriate connectors on the TA465-P using the red and blue tubing.

b. For positive pressure, low-flow testing, add the low-flow nozzle to the blower inlet if it is not installed per Figure 7. Then, connect the grey cast-aluminum cam lock connector to the outlet side of the blower per Figure 6. Close both cam lock arms at the same time to ensure proper fit.

Connect the free end of the static pressure 16 ft (5 m) silicone tube to the positive pressure connector on the PVM610. Finally connect the pressure taps marked P1(+) and P2(-) on the nozzle to the appropriate connectors on the TA465-P using the red and blue tubing.
c. For negative pressure, high-flow testing, remove the low flow nozzle if it is installed. Then, connect the grey cast aluminum cam lock connector to the inlet side of the blower per Figure 8. Close both cam lock arms at the same time to ensure proper fit.

Connect the free end of the static pressure 16 ft (5 m) silicone tube to pressure connector on the PVM610.

Finally connect the pressure taps marked \(P1(+) \) and \(P2(-) \) to the appropriate connector on the TA465-P using the red and blue tubing.

d. For negative pressure, low-flow testing, add the low-flow nozzle to the blower inlet if it is not installed. Then, connect the grey cast aluminum cam lock connector to the low-flow nozzle per Figure 9. Close both cam lock arms at the same time to ensure proper fit.

Connect the free end of the static pressure 16 ft (5 m) silicone tube to the positive pressure connector to the PVM610.

Finally connect the pressure taps marked \(P1(+) \) and \(P2(-) \) on the nozzle to the appropriate connectors on the TA465-P using the red and blue tubing.
Chapter 3

Performing a Duct Leakage Test

The PAN341 duct leakage test system includes a Model PVM610 Micromanometer and a Model TA465-P Ventilation Meter. During duct leakage testing, the Model PVM610 Micromanometer measures the duct static pressure while the Model TA465-P Ventilation Meter measures the airflow rate.

Refer to the Operation and Service Manuals for the Model PVM610 Micromanometer and the Model TA465-P Ventilation Meter to use these instruments in other applications. If you do not have the manuals, download them from TSI® Incorporated’s website www.tsi.com.

Measuring Duct Static Pressure

1. Turn ON the Model PVM610.
2. Zero the Model PVM610 pressure sensor with both ports open to the atmosphere.
3. Connect the (+) port on the Model PVM610 to measure the duct static pressure (see Figure 5).
4. Leave the (-) port on the Model PVM610 open to the atmosphere.

NOTE: Refer to the Model PVM610 Operation and Service Manual for instruction on use.
Measuring Duct Leakage Flow

1. Turn ON Model TA465-P.
2. Zero the Model TA465-P pressure sensor with both ports open to the atmosphere.
3. Connect the Model TA465-P to the PAN341 by connecting the (+) and (-) ports on the Model TA465-P to the P1 (+) and P2 (+) ports located on the inside edge of the box shelf facing the fan. See Figure 10.
4. Connect the thermocouple to the Model TA465-P.
5. Insert the thermocouple probe into the blower inlet through the hole marked TC1.

Turning on the PAN341 Duct Leakage Tester

1. Power the PANDA unit on by plugging in the power cord.
2. Position the Fan Control switch to the RUN position to energize the fan.
3. Increase the fan to the desired speed by turning the Fan Speed Controller clockwise. To decrease the fan speed, turn the Fan Speed controller counter-clockwise.

Using Leakage Test Application in the Model TA465-P

CAUTION

The Model PVM610 and Model TA465-P meters must be zeroed before entering the Leakage Test Application.
1. Press the **MENU** key to access the menu system on the Model TA465-P.

2. Use the ▲▼ keys to highlight the Applications item.

3. Press the ← (ENTER) key to access the Applications menu.

4. Select **Leakage Test** and press ← key.

5. Select either the **EN Standard** or **SMACNA** leakage test.

Instrument Operation if EN Standard Test Protocol is Selected

1. Enter key parameters:
 a. Surface Area of ductwork section to be tested.
 b. Static Pressure of test, as measured by Model PVM610 micromanometer.
 c. Flow Device as Nozzle or Flow Grid.
d. Leakage class as A, B, C, or D. Note that tests with negative pressures must be selected as negative tests, as indicated by -.

e. Test Length, or duration of leakage test, usually 5 minutes.

2. Increase the blower speed until the desired static pressure is achieved.

3. When the static pressure has stabilized, select Run Test and press Enter.

4. The display will show the readings on the right. Leakage Factor and Leak Rate will update in real time, while other parameters will remain constant.

 If the Leakage Factor and Leak Rate are sufficiently stable, press the START soft key or the ← key to begin the leak test.

 Pressing the ESC key will exit back to the previous screen.

5. After the leak test is complete, the Model TA465-P will prompt you to press the SAVE or PRINT soft key. You can also press the ESC key here to back out to the previous screen without saving the data.

 After completing leakage testing for a section of duct, you can move onto the next section.

 D A N G E R

 Turn the isolation switch to the OFF position and wait 10 minutes prior to disconnecting power.
Performing a Duct Leakage Test

Instrument Operation if SMACNA Test Protocol is Selected

1. Enter key parameters:
 a. Surface Area of ductwork section to be tested.
 b. Static Pressure of test, as measured by Model PVM610 micromanometer.
 c. Flow Device as Nozzle or Flow Grid.
 d. Leakage class as a number from 1 to 48. Typical values are 2, 4, 8, or 16.
 e. Test Length, or duration of leakage test.

2. Increase the blower speed until the desired static pressure is achieved.

3. When the static pressure has stabilized, select **Run Test** and press ➔.

4. The display will show the readings on the right. Leakage Factor and Leak Rate will update in real time, while other parameters will remain constant.

 If the Leak Factor and Leak Rate are sufficiently stable, press the **START** soft key or the ➔ key to begin the leak test. Pressing the **ESC** key will exit back to the previous screen.

5. After the leak test is complete, the Model TA465-P will prompt you to press the **SAVE** or **PRINT** soft key. You can also press the **ESC** key here to back out to the previous screen without saving the data.

After completing leakage testing for a section of duct, you can move onto the next section.

D A N G E R

Turn the isolation switch to the OFF position and wait 10 minutes prior to disconnecting power.
Troubleshooting Guide

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended Action</th>
</tr>
</thead>
</table>
| Fan motor will not run. | • Check the power connection.
 • Circuit Breaker may have tripped. |
| Static pressure reading (on PVM610) is zero. | • Check the connections. |
| Static pressure reading (on PVM610) is too low. Required static pressure cannot be achieved with motor speed control settings at the maximum. | • Leakage rate is too high. Check for leaks using soap bubbles or smoke pallets. Alternatively, test a smaller section of the ductwork. |
| Leak rate (on TA465-P shows flashing XXX.XX and status shows Under Range.) | • Check the pressure tube connections to the TA465-P meter.
 • Leak flow is too low. Use low flow nozzle adapter. |
| Leak rate (on TA465-P) shows Flashing 8888 and status shows High. | • Leak flow is too high. Remove Nozzle and use Flow Grid.
 • Leakage rate is too high. Check for leaks or test a smaller section of ductwork. |
Appendix A

Specifications

<table>
<thead>
<tr>
<th>Pressure Measurement (PVM610)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>± 3,735 Pa</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1 Pa</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1% of reading</td>
</tr>
<tr>
<td></td>
<td>±1 Pa</td>
</tr>
<tr>
<td>Actual duct static range</td>
<td>2500 Pa at 0 Flow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume Flow Measurement (TA465-P)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High Leakage Range (Flow Grid):</td>
<td>10 to 200 l/s 36 to 720 m³/hr</td>
</tr>
<tr>
<td>Low Leakage Range (15 mm Low Flow Nozzle Adapter)</td>
<td>1 to 13 l/s 3.6 to 46.9 m³/hr</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±2.5% of reading or ±0.01 l/s, whichever is greater</td>
</tr>
<tr>
<td></td>
<td>±2.5% of reading or ±0.04 m³/hr, whichever is greater</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.01 l/s 0.01 m³/hr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Measurement (TA465-P)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K Type Thermo Couple Probe To EN60584 (IEC 584)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Barometric Pressure Measurement (TA465-P)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>690 to 1,241 hPa 517.5 to 930.87 mm Hg</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±2% of reading</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry Weight</td>
<td>45 Kg</td>
</tr>
<tr>
<td>Total Weight</td>
<td>55 Kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions (LxWxH)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,130 mm x 660 mm x 600 mm</td>
</tr>
<tr>
<td>Power Requirements</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>230V Version</td>
<td>220 to 240 V, 1 Phase, 50/60 Hz 10A</td>
</tr>
<tr>
<td>110V Version</td>
<td>110 to 120 V, 1 Phase, 50/60 Hz 16A</td>
</tr>
<tr>
<td>TA465-P and PVM610</td>
<td>See specification sheets for details on individual instruments</td>
</tr>
</tbody>
</table>

(Specifications are subject to change without notice.)
Appendix B

Leakage Testing Standards Highlights

Different standards are used throughout the world to specify duct air tightness and leakage requirements. The PAN341 duct leakage test system has a duct leakage application to automatically compare the actual leakage flow with the maximum allowed leakage flow for EN and SMACNA standards. Field technicians can also use the duct leakage application to determine actual leakage flow and manually compare it to maximum leakage from another standard. The PAN341 duct leakage test system cannot determine the appropriate leakage classification for a given duct.

Standards Supported

<table>
<thead>
<tr>
<th>Standard</th>
<th>US- or EU-Based</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS EN 1507:2006</td>
<td>EU</td>
<td>Ventilation for buildings—Sheet metal air ducts with rectangular section—Requirements for strength and leakage.</td>
</tr>
<tr>
<td>DW/143</td>
<td>EU</td>
<td>HVAC—A practical guide to Ductwork leakage testing.</td>
</tr>
<tr>
<td>Eurovent 2/2</td>
<td>EU</td>
<td>Air leakage rate in sheet metal air distribution systems.</td>
</tr>
</tbody>
</table>

TSI® has made every effort to accurately reflect the standards referenced. Please refer to the actual standards for more detailed information and to make the best interpretation of each statement.

The scope of the standards listed above includes many items other than duct leakage. This summary, however, is limited to duct leakage testing.
EU Standards
Ductwork classification and maximum air leakage. Note that EN1507, EN12237 Eurovent 2/2 and DW/143 all have the same formula to determine \(f_{\text{max}} \), the Air Leakage Limit, although DW/143 uses units of \(\text{l/s/m}^2 \) whereas others use \(\text{m}^3/\text{s/m}^2 \).

- **EN 1507** (rectangular ductwork)

<table>
<thead>
<tr>
<th>Air Tightness Class</th>
<th>Air Leakage Limit ((f_{\text{max}})) (\text{m}^3/\text{s/m}^2)</th>
<th>Static Pressure Limit ((p_s)) Pa</th>
<th>Negative</th>
<th>Positive at pressure class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\frac{0.027 \cdot p_t^{0.65}}{1000})</td>
<td>200</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>(\frac{0.009 \cdot p_t^{0.65}}{1000})</td>
<td>500</td>
<td>400</td>
<td>1000 2000</td>
</tr>
<tr>
<td>C</td>
<td>(\frac{0.003 \cdot p_t^{0.65}}{1000})</td>
<td>750</td>
<td>400</td>
<td>1000 2000</td>
</tr>
<tr>
<td>D*</td>
<td>(\frac{0.001 \cdot p_t^{0.65}}{1000})</td>
<td>750</td>
<td>400</td>
<td>1000 2000</td>
</tr>
</tbody>
</table>

* Class D ductwork is only for special apparatus

- **EN12237** (circular ductwork)

<table>
<thead>
<tr>
<th>Air Tightness Class</th>
<th>Air leakage limit ((f_{\text{max}})) (\text{m}^3/\text{s/m}^2)</th>
<th>Static Pressure Limit ((p_s)) Pa</th>
<th>Negative</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\frac{0.027 \cdot p_t^{0.65}}{1000})</td>
<td>500</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>(\frac{0.009 \cdot p_t^{0.65}}{1000})</td>
<td>750</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>(\frac{0.003 \cdot p_t^{0.65}}{1000})</td>
<td>750</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>D*</td>
<td>(\frac{0.001 \cdot p_t^{0.65}}{1000})</td>
<td>750</td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

* Class D ductwork is only for special apparatus

- **Eurovent 2/2 Air Tightness For Installed Duct Testing**

<table>
<thead>
<tr>
<th>Air Tightness Class</th>
<th>Air leakage limit ((f_{\text{max}})) (\text{m}^3/\text{s/m}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\frac{0.027 \cdot p_t^{0.65}}{1000})</td>
</tr>
<tr>
<td>B</td>
<td>(\frac{0.009 \cdot p_t^{0.65}}{1000})</td>
</tr>
<tr>
<td>C</td>
<td>(\frac{0.003 \cdot p_t^{0.65}}{1000})</td>
</tr>
</tbody>
</table>
- **DW/143: A Practical Guide to Ductwork Leakage Testing**

<table>
<thead>
<tr>
<th>Duct Pressure Class</th>
<th>Static Pressure Limit</th>
<th>Maximum Air Velocity m/s</th>
<th>Air leakage limits l/s/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive Pa</td>
<td>Negative Pa</td>
<td></td>
</tr>
<tr>
<td>Low-pressure – Class A</td>
<td>500</td>
<td>500</td>
<td>10</td>
</tr>
<tr>
<td>Medium-pressure – Class B</td>
<td>1000</td>
<td>750</td>
<td>20</td>
</tr>
<tr>
<td>High pressure – Class C</td>
<td>2000</td>
<td>750</td>
<td>40</td>
</tr>
</tbody>
</table>

Figure 11. Allowable Air Leakage Rates from DW/143

- The measured leakage flow rates shall be corrected if the temperature and/or barometric pressure are different from standard conditions (+20°C and 101 325 Pa) as follows:

\[q_v = q_{measured} \cdot \frac{293}{273 + t} \cdot \frac{p}{101325} \]

where:

- \(q_v \) = corrected flow leakage rate
- \(q_{measured} \) = measured flow leakage rate
- \(t \) = measured temperature (°C)
- \(p \) = measured barometric pressure (Pa)
• The test report shall give the following general information of the test performed:
 o Date and place
 o Test personnel and witness
 o Test equipment, including pressuring means and measuring instruments
 o Air temperature and barometric pressure during the test
 o Building and project reference
 o Design of installed ductwork including dimensions, thickness of materials, types of stiffening, length, type of duct/tubes and fittings, assembly method and distance of hangers/supports
 o Required air tightness class and design operating pressure of the installed ductwork
 o Installer of ductwork
 o Manufacturer of the ductwork
 o Measured values of:
 1. Ductwork surface area (A)
 2. Total joint length (L)
 3. Test pressure (p_{test})
 4. Leakage flow rate (q_v) corrected for temperature and barometric pressure
 5. Pressurizing time
 o Calculated values of
 1. Leakage factor (f)
 2. Air leakage limit (f_{max}) according to the formulas given in table above at the measured test pressure (p_{test})
 o Air tightness class achieved

• For tests including several test pressures it is recommended to plot the leakage factors as a function of test pressure in a diagram together with the air leakage limit curve.
US Standards

Ductwork classification and maximum air leakage

<table>
<thead>
<tr>
<th>Duct Class</th>
<th>½-1, 2-in wg</th>
<th>3-in wg</th>
<th>4-, 6-, 10-in wg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seal Class</td>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Sealing Applicable</td>
<td>Transverse Joints Only</td>
<td>Transverse Joints and Seams</td>
<td>Joints, Seams and All Applicable Wall Penetrations</td>
</tr>
<tr>
<td>Leakage Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangular Metal</td>
<td>16</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Round Metal</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Maximum air leakage is then defined as \(F = C_L P^{0.65} \)

where:
- \(F \) = Maximum air leakage (cfm/100 ft\(^2\))
- \(C_L \) = Leakage class
- \(P \) = Pressure (inwg)

![Round Duct Allowable Air Leakage](image)

Figure 12. Allowable Air Duct Leakage from Round Ducts, per SMACNA Standard
The SMACNA standard does not generally require correcting leakage flow rates to standard conditions, unless:

1. Air temperature <40°F or >100°F
2. Elevation <1500 ft above sea level
3. Duct static pressure <-20 inwg or >+20 inwg

Should one of these conditions not be satisfied then correcting the leakage to standard conditions may be done using one of these formulas:

1. \(\text{ACFM} = \text{SCFM} \times \frac{(460+T)}{530} \)
 where \(T \) = actual dry bulb air temperature (°F)
 moisture is negligible
 pressure between -20 and +20 inwg

2. \(\text{ACFM} = \text{SCFM} \times 0.075/d \)
 where \(d \) = air density from psychrometric chart

3. \(\text{ACFM} = \text{lb dry air/minute} \times \text{humid volume (ft}^3/\text{lb dry air)} \)

The SMACNA standard does not specify the information to be reported, but instead defers to project documents. However, the
SMACNA standard does include a sample test report that includes:
 o Test date and place
 o Test personnel and witness
 o Building and project reference
 o Duct section tested
 o Specified leakage class, test pressure and duct construction pressure class
 o Measurements of:
 ▪ Ductwork surface area
 ▪ Leakage flow and calculations required to determine leakage flow
Appendix C

Typical Setup

FLEX
Keep length to a minimum and make sure that both end connections are correctly sealed and that the flexible duct has no leaks.

In order to avoid incorrect readings of duct pressure, the tube from the manometer that measures static pressure should be connected directly to the ductwork under test.

SEQUENCE OF TEST
1. Prepare test sheet.
2. Connect and adjust test rig to correct pressure.
3. Read off leakage rate.
4. Re-seal if necessary (allow time to cure).
5. Maintain test for 15 minutes.
6. Switch off and allow to zero.
7. Re-apply test pressure and check reading.
8. Record details on test sheet and obtain signature.

WARNING
Take care not to over-pressurize system under test.

HOW TO FIND LEAKS
1. Look – at blanks, access openings and difficult joints.
2. Listen - with test rig running, leaks should be audible.
3. Feel – running your hand (particularly if wet) over joints can help locate leaks.
4. Soap and Water – paint over joints and look for bubbles.
5. Smoke Pellet – placed inside ductwork (obtain permission for use).