Q-TRAK[™] XP INDOOR AIR QUALITY MONITOR **MODEL 7585**

INTERFERING GASES AND **CROSS SENSITIVITY**

APPLICATION NOTE TSI-166 (US)

Interfering Gases and Cross Sensitivity

Cross sensitivity occurs when a sensor reacts to a gas that is not the target gas. This interfering gas causes a reaction in the sensor and displays a change to the readings even if the target gas is not present.

TSI® Incorporated gas sensors are built for optimum response to the target gas. Unfortunately, other "interfering" gases that may be present along with the target gas can create false signals.

Tables 1–8 show the average cross sensitivity for the most common interfering gases. The percent sensitivity is a measure of the magnitude of cross sensitivity; for example a 20% cross sensitivity means that 100 ppm of the interfering gas would read 20 ppm on the display (or $100 \times 20\%$ = 20 ppm).

Carbon Monoxide (CO) Gas Sensor – 801401			
Interfering Gas	% Sensitivity		
H ₂ S	5	<0.1	
H2 @20c	100	<50	
SO ₂	5	<0.1	
NO ₂	5	<-2	
NO	5	<-2	
CL_2	5	<0.1	
C_2H_4	100	<0.5	
NH ₃	20	<0.1	

common interfering gases.

Table 1: CO gas sensor cross-sensitivity to the most
 Table 2: H₂S gas sensor cross-sensitivity to the most common interfering gases.

Hydrogen Sulfide (H ₂ S) Gas Sensor – 801402			
Interfering Gas	PPM applied	% Sensitivity	
CO	5	<1	
H ₂	100	<0.5	
SO ₂	5	<15	
NO ₂	5	<-20	
NO	5	<3	
CL ₂	5	<-8	
C_2H_4	100	<0.5	
NH3	5	<0.1	
CO2	5%	<0.1	

Table 3: NO2 gas sensor cross-sensitivity to themost common interfering gases.

Nitrogen Dioxide (NO2) Gas Sensor – 801405			
Interfering Gas	PPM applied	% Sensitivity	
CO	5	<-3	
H ₂ S	5	<-80	
H ₂	100	<0.1	
SO ₂	5	<-3	
NO	5	<5	
CL ₂	5	<100	
C_2H_4	100	<1	
NH3	20	<0.2	
CO ₂	5%	<0.1	

Table 4: CL2 gas sensor cross-sensitivity to themost common interfering gases.

Chlorine (CL ₂) Gas Sensor – 801400			
Interfering Gas	PPM applied	% Sensitivity	
CO	400	<0.1	
H ₂ S	20	<-300	
H ₂	400	<0.1	
SO ₂	20	<-8	
NO ₂	10	100	
NO	50	<3	
C_2H_4	400	<0.1	

Table 5: NO gas sensor cross-sensitivity to the mostcommon interfering gases.

Nitric Oxide (NO) Gas Sensor – 801404			
Interfering			
Gas	PPM applied	% Sensitivity	
CO	5	<0.3	
H_2S	5	<20	
		(after3 minutes)	
H ₂	100	<0.1	
SO ₂	5	<4	
NO ₂	5	<7	
		(after3 minutes)	
CL ₂	5	<4	
NH3	5	<0.1	
CO2	5%	<0.1	
Halothane	100	<0.1	

Table 6: O_3 gas sensor cross-sensitivity to the most common interfering gases.

Ozone (O3) Gas Sensor – 801406			
Interfering Gas	PPM applied	% Sensitivity	
СО	5	<-3	
H ₂ S	5	<-80	
H ₂	100	<0.1	
SO ₂	5	<-3	
NO	5	<5	
CL ₂	5	<100	
C_2H_4	100	<0.1	
NH3	20	<0.1	
CO2	5%	<0.1	
Halothane	100	<0.1	

Table 7: CH ₂ O gas sensor cross-sensitivity to the
most common interfering gases.

Formaldehyde (CH2O) Gas Sensor – 801409			
Interference Gas	% Sensitivity		
Carbon Monoxide	50	1	
Ethyl Alcohol	2000	0.01	
Acetic Acid	2000	-0.02	
Ethylene	100	0.3	
Methyl Alcohol	100	0.1	
Isopropanol	100	0.1	

Table 8:	NH_3 gas sensor cross-sensitivity to the
most con	nmon interfering gases.

Ammonia (NH3) Gas Sensor – 801403			
Concentration %			
Interference Gas (ppm) Sensitivit			
H ₂ S	25	88	
Ethanol 200 0.5			

Review of Tables 1–8, note that:

- Cross-sensitivity of interfering gases is temperature dependent. Some gas interferences will increase at higher temperatures while others will decrease.
- Cross-sensitivities were measured at 22°C for CO, H₂S, NO₂, CL₂, NO, and O₃ while CH₂O and NH₃ were measured at 20°C.
- Some interfering gases have a negative effect (for example NO₂ with H₂S sensors). This means that these interfering gases will decrease, rather than increase the signal. Beware that this could cause a situation where a target gas is at an alarm level but an interfering gas is preventing the detector from alarming.
- Cross-sensitivity of interfering gases vary with test environment.
- Cross-sensitivity of interfering gases may vary between batches of sensors.
- Some interfering gases do not simply reversibly interfere but actually poison the sensor, for example benzene or toluene will poison a H₂S sensor.
- Interfering gases act on the sensor in two ways:
 - 1. Most interfering gases (CO, H₂, H₂S) react on the working electrode, generating a current. The interfering signal rapidly stabilizes and is stable.
 - Some interfering gases (C₂H₄, NO) modify the reference electrode potential, causing a
 potential shift on the working electrode. This variable interference stabilizes after typically
 30 minutes.
- Chemical filters are used in the CO sensor. This chemical filter removes interfering gases by: adsorbing onto the chemical filter material, chemically absorbing the interfering gas, or catalytically reacting with the interfering gas.

These chemical filters have a finite lifetime that is different than the electrochemical gas cell lifetime. Therefore, CO sensor will show increased cross sensitivity to certain interfering gases after heavy exposure to these interfering gases.

- CO gas sensor has a H₂S filter with a capacity of 250,000 ppm-hrs.
- The NO₂ gas sensor has an O₃ filter with a capacity of >500 ppm-hrs.

References

Alphasense (www.alphasense.com) Application Note AAN 109-2

UNDERSTANDING, ACCELERATED

TSI Incorporated - Visit our website www.tsi.com for more information.

USA	Tel: +1 800 680 1220	India	Tel: +91 80 67877200
UK	Tel: +44 149 4 459200	China	Tel: +86 10 8219 7688
France	Tel: +33 1 41 19 21 99	Singapore	Tel: +65 6595 6388
Germany	Tel: +49 241 523030		

TSI-166-US Rev. A (2/16/2021)

©2021 TSI Incorporated