The VelociCalc® Model 9565 series are portable, handheld, Multi-Function Ventilation Test Instruments featuring a menu-driven user interface for easy operation in your local language. On-screen prompts and step-by-step instructions guide the user through instrument setup, operation, and field calibration. The 9565 also features an ergonomic, overmolded case design with probe holder and a keypad lockout to prevent tampering during unattended use. These instruments are available with or without a differential pressure sensor and are designed to work with a wide range of plug-in probes.

Applications

- HVAC testing and balancing
- Cleanroom testing
- Biological safety cabinet and laboratory fume hood testing
- HVAC commissioning and troubleshooting
- IAQ investigations
- Thermal comfort studies
- Ventilation evaluations
- Process air flow testing

Features and Benefits

- Best-in-class air velocity accuracy
- Optional smart plug-in probes, including VOC, CO₂, and rotating vane probes
- Accommodates up to two K-alloy thermocouples
- Large graphic display
 - Displays up to five measurements simultaneously
 - On-screen messages and instructions
 - Program for local language
- Intuitive menu structure allows for ease of use and setup
- Multiple data logging formats
- Bluetooth communications for transferring data or remote polling
- Includes TrakPro™ and LogDat2™ downloading software with USB cable

VELOCICALC® MULTI-FUNCTION VENTILATION METER

MODEL 9565
LogDat2™ Downloading Software

The VelociCalc Model 9565 Series includes downloading software called LogDat2. LogDat2 software transfers the stored data from the Model 9565 to a computer as a spreadsheet file. This software is useful for applications such as duct traverses, fume hood, and filter face velocity testing.

Thermoanemometer Air Velocity Probes

TSI offers four models featuring multiple measurements in a compact, robust probe design. These telescopic probes are available in straight or articulating construction, and with or without a relative humidity sensor. Models with a relative humidity sensor can also calculate wet bulb and dewpoint temperature.

Common applications include duct traversing, face velocity testing of chemical fume hoods, biological safety cabinets and HEPA filters. When combined with the 9565, advanced measurement applications can be performed including heat flow, draft rate and turbulence intensity.

Rotating Vane Anemometer Probe

The 4” (100 mm) rotating vane probe measures air velocity and temperature with flow calculation. Measurement applications include face velocity as well as air velocity in turbulent airstreams. An optional telescopic articulating probe and an Aircone kit are also available.

Pitot Probes and Airflow Probe 800187

Pitot probes are used to obtain air velocity and air volume measurements within ductwork by performing a duct traverse. Consult factory for sizes and part numbers.

The Airflow Probe Model 800187 is an 18” (46 cm) straight Pitot probe that can be used to perform duct traverses and are ideally suited for measuring in small diameter ductwork.

Data Collection and Reporting

Expanded data logging capacity and the inclusion of TrakPro Data Analysis Software provides the capabilities to work more effectively and efficiently. The 9565 can store up to 38.9 days of data collected at one-minute log intervals. The stored data can be recalled, reviewed on screen, and downloaded for easy reporting. This software is useful for long term, unattended data logging applications such as IAQ and VOC investigations.

+ Log multiple parameters to investigate trends.
+ Store up to 38.9 days of data collected at one-minute log intervals
+ User-selectable logging intervals and start/stop times
+ Download data to TrakPro data analysis software
+ Report generation
+ Instrument programming
+ Graph creation
<table>
<thead>
<tr>
<th>MODELS 960, 962, 964, 966, 995, 980, 982, 792, 794, 984, 985, 986, AND 987</th>
</tr>
</thead>
<tbody>
<tr>
<td>960 Thermoanemometer Straight Probe Velocity and Temperature</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Accuracy</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
</tbody>
</table>

962 Thermoanemometer Articulating Probe Velocity and Temperature |
Range	0 to 9,999 ft/min (0 to 50 m/s), 0 to 20°F (-18 to 93°C)
Accuracy	±3% of reading or ±3 ft/min (±0.015 m/s), whichever is greater
Resolution	1 ft/min (0.01 m/s), 0.1°F (0.1°C)

964 Thermoanemometer Straight Probe Velocity, Temperature and Humidity |
Range	0 to 9,999 ft/min (0 to 50 m/s), 14 to 140°F (-10 to 60°C), 5 to 95% RH
Accuracy	±3% of reading or ±3 ft/min (±0.015 m/s), whichever is greater
Resolution	1 ft/min (0.01 m/s), 0.1°F (0.1°C), 0.1% RH

966 Thermoanemometer Articulating Probe Velocity, Temperature and Humidity |
Range	0 to 9,999 ft/min (0 to 50 m/s), 14 to 140°F (-10 to 60°C), 5 to 95% RH
Accuracy	±3% of reading or ±3 ft/min (±0.015 m/s), whichever is greater
Resolution	1 ft/min (0.01 m/s), 0.1°F (0.1°C), 0.1% RH

995 Rotating Vane 4 in. (100 mm) Probe Velocity and Temperature |
Range	50 to 6,000 ft/min (0.25 to 30 m/s), 32 to 140°F (0 to 60°C)
Accuracy	±1% of reading or ±4 ft/min (±0.02 m/s), ±2.0°F (±1.0°C)
Resolution	1 ft/min (0.01 m/s), 0.1°F (0.1°C)

980 IAQ Probes CO₂, Temperature and Humidity |
Range	0 to 5,000 ppm CO₂, 5 to 95% RH, 14 to 140°F (-10 to 60°C)
Accuracy	±3% of reading or ±50 ppm CO₂, whichever is greater
Resolution	1 ppm CO₂, 0.1% RH, 0.1°F (0.1°C)

| **982 IAQ Probes Model CO, CO₂, Temperature and Humidity** |
Range	0 to 500 ppm CO, 0 to 5,000 ppm CO₂, 5 to 95% RH, 14 to 140°F (-10 to 60°C)
Accuracy	±3% of reading or ±3 ppm CO, whichever is greater
Resolution	0.1 ppm CO, 1 ppm CO₂, 0.1% RH, 0.1°F (0.1°C)

792 and 794 Thermocouple Probes Temperature |
Range	-40 to 120°F (-40 to 650°C)
Accuracy	±0.1% of reading +2°F (+0.056% of reading +1.1°C)
Resolution	0.1°F (0.1°C)

984 Low Concentration (ppb) VOC and Temperature |
Range	10 to 20,000 ppb, 14 to 140°F (-10 to 60°C)
Accuracy	±1.0°F (±0.5°C)
Resolution	10 ppb, 0.1°F (0.1°C)

985 High Concentration (ppm) VOC and Temperature |
Range	1 to 2,000 ppm, 14 to 140°F (-10 to 60°C)
Accuracy	±1.0°F (±0.5°C)
Resolution	1 ppm, 0.1°F (0.1°C)

986 Low Concentration (ppb) VOC, Temperature, CO₂, and Humidity |
Range	10 to 20,000 ppb VOC, 0 to 5,000 ppm CO₂, 14 to 140°F (-10 to 60°C), 5 to 95% RH
Accuracy	±3% of reading or 50 ppm CO₂, whichever is greater
Resolution	10 ppb VOC, 0.1 ppm CO₂, 0.1°F (0.1°C), 0.1% RH

987 High Concentration (ppm) VOC, Temperature, CO₂, and Humidity |
Range	1 to 2,000 ppm VOC, 0 to 5,000 ppm CO₂, 14 to 140°F (-10 to 60°C), 5 to 95% RH
Accuracy	±3% of reading or 50 ppm CO₂, whichever is greater
Resolution	1 ppm VOC, 0.1 ppm CO₂, 0.1°F (0.1°C), 0.1% RH
Specifications

Velocity (Pitot or Airflow probe for Meter Models 9565, 9565-A, 9565-P)

<table>
<thead>
<tr>
<th>Range</th>
<th>Accuracy</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 to 15,500 ft/min (1.27 to 78.7 m/s)</td>
<td>±1.5% at 2,000 ft/min (10.16 m/s)</td>
<td>1 ft/min (0.01 m/s)</td>
</tr>
</tbody>
</table>

Duct Size

Dimensions: 1 to 500 inches in increments of 0.1 in. (2.5 to 1,270 cm in increments of 0.1 cm)

Volumetric Flow Rate

Actual range is a function of velocity, pressure, duct size, and K factor

Static/Differential Pressure (Meter Models 9565, 9565-A, 9565-P)

<table>
<thead>
<tr>
<th>Range</th>
<th>Accuracy</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15 to +15 in. H2O (-28.0 to +28.0 mm Hg, -3.735 to +3.735 Pa)</td>
<td>±1% of reading ±0.005 in. H2O (±0.01 mm Hg, ±0.1 Pa)</td>
<td>0.001 in. H2O (0.1 Pa, 0.01 mm Hg)</td>
</tr>
</tbody>
</table>

Barometric Pressure

Range: 20.36 to 36.468 in. Hg (517.15 to 930.87 mm Hg)

Accuracy: ±2% of reading

Instrument Temperature Range

Operating (Electronics): 40 to 113°F (5 to 45°C)

Storage: -4 to 140°F (-20 to 60°C)

Data Storage Capabilities

Range: 26,500+ samples and 100 test IDs

Logging Interval

1 second to 1 hour

Time Constant

User selectable

External Meter Dimensions

3.8 in. x 8.3 in. x 2.1 in. (9.7 cm x 21.1 cm x 5.3 cm)

Meter Weight with Batteries

0.8 lbs. (0.36 kg)

Power Requirements

Four AA-size batteries or AC adapter

TO ORDER

Multi-Function Ventilation Meter with differential pressure sensor and Thermoanemometer Probe

Specify	Description
9565 | Multi-function ventilation meter 9565-P with straight air velocity probe Model 964
9565-A | Multi-function ventilation meter 9565-P with articulated air velocity probe Model 966

Multi-function Ventilation Meter Only. Choose a probe most appropriate for your measurement needs.

Specify	Description
9565-X | Multi-function ventilation meter, no plug-in probes, no differential pressure sensor
9565-P | Multi-function ventilation meter, no plug-in probes, with differential pressure sensor, tubing and static pressure probe

NOTE: All models include: Instrument, hard carrying case, 4 alkaline batteries, USB cable, universal power supply, instruction manual, calibration certificate, LogDat2 and TrakPro downloading software.

Models 9565, 9565-A, and 9565-P also include (1) 8-ft. (2.4-m) rubber tube and (1) static pressure tip.

1. Pressure velocity measurements are not recommended below 1,000 ft/min (5 m/s) and are best suited to velocities over 2,000 ft/min (10.16 m/s). Range can vary depending on barometric pressure.
2. Accuracy is a function of converting pressure to velocity. Conversion accuracy improves when actual pressure values increase.
3. Overpressure range = 190 in. H2O, 48 kPa (360 mmHg).
4. Temperature compensated over an air temperature range of 40 to 150°F (5 to 65°C).
5. The accuracy statement begins at 30 ft/min through 9,999 ft/min (0.15 m/s through 50 m/s).
6. Accuracy with instrument case at 77°F (25°C), add uncertainty of 0.05°F/°F (0.03°C/°C) for change in instrument temperature.
7. Temperature compensated over an air temperature range of 40 to 150°F (5 to 65°C), add uncertainty of ±0.2%/°F (0.36%/°C) for change in temperature.
8. Accuracy with probe at 77°F (25°C). Add uncertainty of 0.1% RH/°F (0.2% RH/°C) for change in temperature. Includes 1% hysteresis.
9. At 77°F (25°C). Add uncertainty of ±0.2%/°F (0.36%/°C) for change in temperature.
10. When response factor is set to 1.00.

Specifications are subject to change without notice.

TSI Incorporated - Visit our website www.tsi.com for more information.

USA: Tel: +1 800 874 2811 | India: Tel: +91 80 67877200
UK: Tel: +44 149 4 453200 | China: Tel: +86 10 8219 7688
France: Tel: +33 1 41 19 21 99 | Singapore: Tel: +65 6995 6388
Germany: Tel: +49 241 523030

©2015 TSI Incorporated | Printed in U.S.A.